Supporting Conceptual Modeling of Dynamic Systems

Jochem Liem
19-12-2013
Exercise

- Scenario: Atmospheric CO2 in stabilizes in 2100
- Sketch:
 - CO2 emissions
 - net removal
Failure is typical

- 84% of graduate students at MIT incorrect
- Current science and math education insufficient!
- Similar problems difficult for general public
Failure is typical

- 84% of graduate students at MIT incorrect
- Current science and math education insufficient!
- Similar problems difficult for general public
Conceptual Simulation Models

- Learning by modeling
 - Causes of change (I+/I-)
 - Propagation of change (P+/P-)
Applicable to many domains
Applicable to many domains
Benefits of conceptual models

• Conceptual representation (even for values)
 – Qualitative distinct values (0p, clean, criticalp, toxic)
 – To which systems do theories apply?
 – Under which conditions?

• Simulation: Testing your ideas

• Direct & indirect causality
 – Cause / Propagation / Feedback

• Re-occurring patterns
 – Bathtub = Atmospheric CO\textsubscript{2} = Bank account = Population
Three research contributions

1. Conceptual modeling in secondary education
 • How can *learning by modeling* be made easier?

2. Method to grade conceptual models
 • What is important in a conceptual model?
 • How should models be graded?

3. Interoperability in interactive learning environment
 • How can software components *reuse* model information?
1. Learning spaces

- 6 learning spaces
 - Modeling and simulation
 - Progressively more complete subsets of full language

- Successfully evaluated
 - Usable in secondary school
 - Allows learning of domain knowledge
 - Reoccurring patterns
2. Improvement & grading

• Guidelines for modeling
 – What is a good model?
 – Ways to detect errors and correct them.

• Evaluation
 – Allows model grade to be derived.
 – Grades correspond to intuition of teachers.
3. Reusable Models

You modelled the process carbon emissions. Why not also model an opposing process, such as photosynthesis or carbon absorption by the sea?
3. Reusable Models

You modelled the process *carbon emissions*. Why not also model an opposing process, such as *photosynthesis* or *carbon absorption* by the sea?
3. Reusable Models

You modelled the process *carbon emissions*. Why not also model an opposing process, such as *photosynthesis* or *carbon absorption* by the sea?
3. Reusable Models

You modelled the process of carbon emissions. Why not also model an opposing process, such as photosynthesis or carbon absorption by the sea?
Conclusions

• New: learning by conceptual modeling!
• Research allows:
 – Conceptual modeling in high school
 – Grading of conceptual models
 – Teaching of better modeling
 – Support via virtual characters